Modelamientos de los parámetros geofísicos por una fuente sísmica capaz de generar un tsunami en la costa de Pochomil, Nicaragua

Autores/as

DOI:

https://doi.org/10.5377/farem.v11i41.13891

Palabras clave:

Tsunami, golpe, buzamiento, deslizamiento, magnitud, profundidad, rigidez

Resumen

En esta investigación, los parámetros geofísicos (golpe, deslizamiento, inclinación, buzamiento, tipo de falla, rigidez, profundidad, dinámica de ruptura sísmica, generación y propagación de tsunamis) del movimiento del suelo debido a un terremoto de deslizamiento de bloque como el ocurrido en 1992 frente a la costa de León. Estos parámetros están asociados a movimientos verticales y horizontales tridimensionales del suelo dependientes del tiempo de modelos de ruptura dinámica espontánea que conducen a la generación de un tsunami como amenaza latente para la costa de Pochomil. Para ello se utilizó el software TUNAMI-N2 Code modificado por Yanagisawa (2018), basado en los parámetros geofísicos calculados por el Servicio Geológico de los Estados Unidos (USGS), el Global Centroid-Moment-Tensor Project (GCMT), y Tanioka et al. 2017, con magnitud 7,7 Mw. De los resultados del modelado, el evento que genera una onda de mayor amplitud fue causado por un plano de falla inversa, con magnitud 8.0 Mw, rigidez 15 GPa, profundidad 10 km, buzamiento 80.8°, inclinación 87.2° y deslizamiento 118°. El modelo de propagación de olas generó una altura de 14,2 m y un tiempo de llegada de 35 minutos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abe, F. (1989): “Deformation characteristics of sand in plane strain compression at small strain levels,” Master thesis, University of Tokyo (in Japanese).

Ambraseys, N. (1962). Data for the investigation of the seismic sea waves in the Eastern. Bull. Seis. Soc. Amer., 52(4), 895-913.

Argüello, G. (2016). W phase inversion analysis and tsunami simulation for tsunami warning for large earthquake (mw > 7.0) in Nicaragua. Managua.

Baba, T., and Cummins, P. R. (2005), Contiguous rupture areas of two Nankai Trough earthquakes revealed by high-resolution tsunami waveform inversion, Geophys. Res. Lett., 32, L08305, doi:10.1029/2004GL022320.

Borrero, J., Kalligeris, N., Lynnet, P., Fritz, H., Newman, A., & Convers, J. (2014). Observations and Modeling of the August 27, 2012, Earthquake and Tsunami affecting El Salvador and Nicaragua. Springer Base.

Cabrera, A. (2018). Tsunami Characteristics of outer-rise Eaerthquakes along the pacific coast of Nicaragua - A Case study for the 2016 Nicaragua Event-. Managua, Nicaragua. MEE16718.

Cardona, O., Yamín, L., Bernal, G., Ordaz, S., Reinoso, A., Barbat, B., & Carreño, T. (2008). Amenaza por tsunami en Miramar. Managua.

Castillo. (2017). Geología de la Región Pacífica de Nicaragua. Managua: – ISSN 2164-4268.

Elbanna, A., Abdelmeguid, M., Ma, X., Amlani, F., Bhat, H. S., Synolakis, C., & Rosakis, A. J. (2021). Anatomy of strike-slip fault tsunami genesis. Proceedings of the National Academy of Sciences, 118(19)

Espín, R. (2012). La Física de los Tsunamis.

Fernandez, M., Molina, E., Havscov, J., & Atakan, K. (2000). Tsunamis and Tsunami Hazards in Central America.

Goto, C. O. (1997). TIME Project: Numerical Method of Tsunami Simulation with the Leap-Frog Scheme. Intergovernmental Oceanographic Commission of UNESCO, Manuals and Guides 35, Paris.

Güendel, F., & Protti, M. (1998). Sismicidad y sismotectónica de América Central. Física de La Tierra.

Gusiakov, K. (2016). Tsunami history - recorded. Rusia.

Hanks, T., & Kanamori, H. (1979). A moment magnitude scale. Geophys.

Imamura. (1942). History of Japanese tsunamis. Kayo-No-Kagaku (Oceanography). Japón.

Imamura, F. S. (1993). Estimate of the Tsunami Source of the 1992 Nicaraguan Earthquake from. Tokyo.

Imamura, F., & Yalciner, A. (2006). Tsunami modelling manual (tunami model). Japón.

INETER. (2019). Boletín Sismológico, Vulcanológico y Geológico. Dirección General de Geología y Geofísica. Managua: Apdo.2110.

Linsley, R; Franzini, B; (1979) Water Resourses Engineering Third Edition. Mcgraw-Hill Series in Water Resources Engineering.

Kajiura, K. (1963). The leading wave of tsunami, Bull. Earthq. Tohoku.

Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the earth and planetary interiors, 6(5), 346-359.

Kanamori, H. (1977). The energy reléase in great earthquakes. Geophys.

Koshimura, S. (2009). Developing fragility functions for tsunami damage estimation using numerical model and post-tsunami data from banda aceh, indonesia. Tohoku.

Koshimura, S. (2009) TUNAMI-CODE, Tohoku University’s Numerical Analysis Model for Investigation of Tsunami, JST-JICA Perú Project, Disaster Control Research Center, Tohoku University.

Lana, X., & Correig, A. (1981). Determinación de la longitud de falla y velocidad de ruptura. Barcelóna.

Leeds, D. (1974). Catalog of Nicaraguan Earhguakes. Am., 64, 1153- 1158.

Levin, B., & Nosov, M. (2009). Physics of Tsunamis. Rusia.

Lida, K. (1963). Magnitude, energy and generation mechanisms of tsunamis and a catalogue of.

Mansinha, L., & Smylie, D. (1971). The displacement Fields of Inclined Faulds: Bulletin of the Seismological Society of America.

Minster, J., & Jordan, H. (1978). present-day plate motions. J.G Res., 83, 5331 -52554.

Molina, E., Marroquín, G., Escobar, J., Talavera, E., Rojas, W., Climent, A., Lindholm, C. (2008). Proyecto resis II. Evaluación de la Amenaza Sísmica en Centroamérica.

Niemeyer, H. (1999). Apuntes de geologia estructural. Antofagasta.

Okada, Y (1992) Internal deformation due to shear and tensile faults in a half space, Bull. Seismol. Soc. Am. 82(2), 1018 -1040.

Papadopoulos, G., & Imamura, F. (2001). A proposal for a new tsunami intensity scale. In: Proceedings of International Tsunami Symposium. Seattle, U.S.A., 569-577.

Polet, J., & Thio, H. K. (2003). The 1994 Java tsunami earthquake and its “normal” aftershocks. Geophysical Research Letters, 30(9).

Rojas, W. (1993). Catálogo de sismicidad histórica y reciente de América Central. Desarrollo y Análisis Tesis de Licenciatura en Geología, Universidad de Costa Rica.

Sakate, K. (2014). Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami.

Satake, K. (1994). Mechanism of the 1992 Nicaragua tsunami earthquake. En geophysical research letters, vol. 21 (pág. No.23). Michigan: PAGES 2519-2522.

Segura, F. (2008). Algunas características de la subducción frente a Nicaragua. UNAN-Managua.

Segura, F. (2013). Reseña de la sismicidad en Nicaragua. Managua.

Segura, F. (2016). Reseña de la sismicidad en Nicaragua con énfasis en la Depresión Nicaragüense. Managua.

Segura, F & Rojas, W. (1987). Amenaza sísmica para el Centro de la ciudad de Managua Nicaragua.

Shipley, T., & Moore, G. (1990). Sediment accretion, subduction, and dewatering at the base trench sople off Costa Rica: A seismic reflection view of the décollement, - Geophys. Res., 21.

Shuto, N. (1993). Tsunami intensity and disaster. In: Tsunamis in the World. S.Tinti, . Kluwer Academic Publisher, Dordrecht.

Sieberg, A. (1927). Geologische, physikalische und angewandte Erdbeben Kunde. Verlag von Gustav Fischer, Jena.

Tanioka, Y., & Argüello, G. (2017). Method to Determine Appropriate Source Models of Large Earthquakes Including Tsunami.

Tanioka, Y., Grillo, U., & Argüello, G. (2019). Pronóstico de inundación de tsunami casi en tiempo real para América Central: estudio de caso del terremoto de tsunami de Nicaragua en 1992. Managua.

Taylor, M. A. J., Dmowska, R., and Rice, J. R. (1998), Upper plate stressing and seismicity in the subduction earthquake cycle, J. Geophys. Res., 103(B10), 24523– 24542, doi:10.1029/98JB00755.

Titov, V. V., & Synolakis, C. E. (1997). Extreme inundation flows during the Hokkaido-Nansei-Oki tsunami. Geophysical Research Letters, 24(11), 1315-1318.

Tristan, J. (1916). The Costa Rica Earthquake of february 27, 1916 Bull. Seism. Soc. Am. V6, pp. 232-235.

Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.

Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismol. Res. Lett., 72, 3, 373-382.

Wiemer, S., & Zuniga, R. (1994). ZMAP - a software package to analyze seismicity, EOS, Transactions, Fall Meeting. AGU, 75, 456.

Yanagisawa, H. (2018). Lecture notes on Numerical simulation of tsunami inundation and its application, IISEE/BRI.

Descargas

Publicado

04-04-2022

Cómo citar

García Montano, H., & Maltez Perez, N. J. (2022). Modelamientos de los parámetros geofísicos por una fuente sísmica capaz de generar un tsunami en la costa de Pochomil, Nicaragua. Revista Científica De FAREM-Estelí, 11(41), 175–194. https://doi.org/10.5377/farem.v11i41.13891

Número

Sección

CIENCIAS AMBIENTALES

Artículos similares

También puede {advancedSearchLink} para este artículo.